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Abstract 

The perturbative QCD fragmentation fimctious for a heavy quark to fragment into 

heavy-light mesons are studied in the heavy-quark limit. The fragmentation functions 

for S-wave pseudoscalar and vector mesons are calculated to next-to-leading order in 

the heavy-quark mass expansion using the methods of heavy-quark effective theory. 

The results agree with the mb + 00 limit of the perturbative QCD fragmentation 

functions for 6 into B, and B,‘. We discusa the application of the perturbative QCD 

fragmentation functions aa a model for the fragmentation of heavy quarks into heavy- 

light mesons. Using this model, we predict the fraction fi of heavy-light mesons that 
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are produced in the vector meson state as functions of the longitudinal momentum 

fraction z and the transverse momentum relative to the jet axis. The fraction I+ is 

predicted to vary from about l/2 at small t to almost 3/4 near z = 1. 
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I. Introduction 

Heavy-quark spin-flavor symmetries are very useful for understanding the properties of 

hadrons containing a single heavy quark in kinematic regimes where nonperturbative aspects 

of the strong interaction are dominant. These symmetries arise from the fact that the charm, 

bottom, and top quarks are much heavier than AQCD. The symmetry is exact in the limit 

of infinite quark mass, and corrections can be systematically organized into an expansion 

in powers of AQcD/mQ using heavy-quark effective theory (HQET). There has been much 

progress on the applications of heavy-quark symmetries and HQET to the spectroscopy, and 

to both exclusive and inclusive decays, of charm and bottom hadrons [l]. 

It has recently been pointed out by Jaffe and Randall [2] that HQET can also be applied 

to the fragmentation of a heavy quark into hadrons containing a single heavy quark. They 

showed that when the fragmentation’function is expressed in terms of an appropriate scaling 

variable, it has a well-defined heavy-quark mass expansion. Specifically, they showed that the 

fragmentation function Dg-.H(z) at the heavy-quark mass scale has a systematic expansion 

in inverse powers of mg when expressed as a function of the scaling variable 

Y 
1 - (1 - r)z = 7 

TZ 
(1) 

where T = (mH - mo)/mH, mH is the mass of the heavy hadron, and z is its longitudinal 

momentum fraction relative to the fragmenting heavy quark. In the case of a heavy-light 

meson, T can be interpreted as the ratio of the constituent mass of the light quark to the 

meson mass. For the pseudoscalar meson P and vector meson V of the same S-wave multiplet 

(‘So, 3S1), the fragmentation functions at the scale mg have heavy-quark mass expansions 

of the form 

&+P(Z) = * + b(y) + O(r), 

U’(Y) 

(2) 

&d(Z) = --y- + b’(Y) + w , (3) 

where a*(y) = 3a(y). By heavy-quark spin symmetry, the leading terms differ by a spin 
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factor of 3, while spin splittings first appear at next-to-leading order in the functions b(y) 

and b*(y). 

It was also realized recently that the fragmentation functions for mesons containing a 

heavy quark and a heavy antiquark can be computed using perturbative quantum chromo- 

dynamics (PQCD) [3, 4, 51. The fr a g mentation functions for a 6 to split into the S-wave &c 

mesons B, and B,* were calculated to leading order in a, in Ref. [6]. These fragmentation 

functions have been used to predict the production rates of the B, meson at LEP and at 

the Tevatron [7, 81. The general analysis of Jaffe and Randall must certainly apply to per- 

turbative QCD fragmentation functions in the limit where the mass of the heavier quark is 

taken to infinity. It was verified explicitly in Ref. [6] that the PQCD fragmentation functions 

%&) and D ~-B:(Z) reduce to the forms (2) and (3) with T = mc/(mb +m,) in the limit 

mb + 00. 

Since the PQCD fragmentation functions are consistent with heavy-quark symmetry, 

they can be used as models for the fragmentation of heavy quarks into heavy-light mesons. 

In this paper, we show how the leading and next-to-leading terms in the l/ma expansions 

can be calculated directly from HQET. We then discuss the use of the PQCD fragmentation 

functions as a phenomenological model for the fragmentation of charm and bottom quarks 

into heavy-light mesons. As an application of this model, we consider the fraction PV of 

heavy-light mesons that are produced in the vector-meson state. 

II. PQCD Fragmentation Functions from HQET 

The HQET Lagrangian, including the leading and the l/m* terms, is given by [l] 

t = II, iv-D+ & (Cl(iD)? - Cz(v . iD)2 - $,cYG, h,, (4) 
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__ .- where 

Cl = 1, 

c2 = 31*) 
-s/(33-2n,) 

-2, (5) 
c3 = (.2&l) -9w-2n/) . 

These coefficients are all equal to 1 at the heavy-quark mass scale p = mg. The term propor- 

tional to C2 can be omitted in calculating physical quantities, because it can be eliminated 

using a field redefinition involving the equation of motion (v * D)h, = 0 from the leading 

term in the Lagrangian. Our method for calculating the fragmentation function involves a 

heavy quark which is off-shell by an amount at least of order mqm,. To demonstrate that 

the C2 term can still be omitted in this case, we keep it in our calculation throughout, and 

show that it cancels between the vertex and propagator corrections. 

In our calculation, we need the Feynman rules derived from the HQET Lagrangian for (i) 

the heavy-quark propagator, including l/ mg corrections, (ii) the heavy-quark-gluon vertex, 

including l/mq corrections, and (iii) the propagator for the small component of the Dirac 

field of the heavy quark. This last Feynman rule is needed in our calculation because 

the fragmenting 

propagator is 

heavy-quark is off its mass shell. The Feynman rule for a heavy-quark 

i l+ti 
v.k+&k2+-(v.k)2 2 ’ 

where k: is the residual 4momentum of the heavy quark. The QQg vertex is 

c3 - ig,T” vp + &(h + b)” - 2 v * (h + k2)vp + i-Yq, 2”9 , 0 (7) 

where ICI and k2 are the residual Cmomenta of the incoming and outgoing quarks and 

Q = k2 - ICI is the momentum of the gluon. The Feynman rule for the propagator of the 

small component of the Dirac field of the heavy-quark is 

(8) 

To calculate the fragmentation functions, we follow the method introduced in Refs. [3] 

and [5] and applied in Ref. [6] to the fragmentation processes 5 --) B, and 5 -+ B,‘. We 
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denote the pseudoscalar and vector &(r mesons by P and V, respectively. Here Q is the 

heavy quark, and Q is the light antiquark. We calculate the cross section for producing a 

Qq meson plus a light quark q with total 4-momentum KU, divide it by the cross section for 

producing an on-shell Q with the same 3-momentum d, 

fragmentation function is 

D(r)=& a-E-+$ 
z -1 

and take the limit Kc --+ 00. The 

C lM12 
~:?&a C I,442 ’ (9) 

where M = mq + mp is the mass of the meson in the nonrelativistic approximation, s = K2, 

M is the matrix element for producing P + q or V + q, and Mo is the matrix element for 

producing an on-shell Q. The calculation can be greatly simplified by using the tial gauge 

with the gauge parameter n@ = (l,O, 0, -1) in the frame where Kp = (Ko,O,O, ,/i&). In 

this gauge, we need only consider the production of the Qg meson plus q through a virtual Q 

of momentum KM. The part of the matrix element M that involves production of the virtual 

Q can be treated as an unknown Dirac spinor r. In the limit Ko --) 00, the same spinor factor 

r appears in the matrix element M o = h(K) for an on-shell Q. The Feynman diagram for 

Q’ + Qq + q is shown in Fig. 1. The usual projection of the Qq onto a nonrelativistic ‘So 

bound state reduces in the heavy-quark limit to the Feynman rule 

s’j R(O)d33 sl+# 
89-z J47; r2’ (10) 

where R(0) is the radial wavefunction at the origin for the meson and vcI is its Pvelocity. 

For the 3Si state, the projection is the same except that r5 is replaced by f, where &’ is 

the polarization Cvector for the vector meson V. The rest of the amplitude corresponding 

to Fig. 1 is obtained by using the ordinary QCD Feynman rules for the light quark spinor 

and the qijg vertex and HQET Feynman rules for the heavy-quark propagator and the QQg 

vertex. 

The amplitude M for producing the ‘,$&state, including l/mg corrections in the heavy- 

quark propagator and vertex, is 

iM=- 8fia,R(O) M2d% 1 1 n,lcy -I- kg, 
3 mq (8 - mi)” 1 + * - &p.k 

g,u - n.k 
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x c(p’)y”y5( 1 + $) V” + Sk” 
0 

- $-(v - k)v” + $ (Y”C - CY”> 
0 

7 r (11) 

where k = mqv + p’ is the momentum of the virtual gluon and also the residual momentum 

of the fragmenting heavy quark: K = mqv + k. Note that the term proportional to n, in 

the numerator of the axial-gauge propagator for the gluon vanishes after contracting with 

the Dirac factor. For the vector meson state, the y5 in the above equation is replaced by f. 

We are interested only in the sum of the first two terms a(y)/r + b(y) in the heavy-quark 

mass expansion, where T = m,/(mq + mq). We calculate separately the contributions to 

the fragmentation functions from the leading terms in the HQET Feynman rules, from the 

l/mq corrections from the propagator, and from the l/mq corrections from the vertex. For 

the following we will detail the derivation for the ‘So state, but only quote the results for 

the 3S1 state. 

We first derive the fragmentation function Dq,p(z) with the leading terms in the HQET 

propagator and vertex only. The amplitude reduces to 

iM1 = 8&3(O) M2@ 1 
3 mq (8 - m$)2 w)(l+~)Yv+d)r. 

Squaring and summing over spins and colors of the light quark, we get 

~lM12 = 
64na;IR(0)j2 M5 

9 z” crf(’ +$)I 

z(1 - z) 

Q 
[ M3(1 - (1 - T)z)z(a - m$)2 

-1+z+3TZ 4tM 

+M(l - (1 - T)Z)(s - m6)3 - (s - mb)* 1 ’ 

The corresponding amplitude-squared for producing an on-shell heavy quark is 

c IMo12 = ZTr (lYf(l + #)) . 
Z 

Substituting [Ml2 and IMoI’ into (9) and integrating over s, we get 

Dq,&) = 
2a,(2mq)2/R(0)12 rz3(1 - z)~ 

81?rmi (1 - (1 - T)Z)6 

x ( 3(1- (1 - r)~)~ - ~TZ( 1 - z) + 12rz( 1 - (1 - r)z)) . 

(12) 

(13) 

(14 

(15) 
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Expressing this in terms of y using (1) and expanding to next-to-leading order in T, we have 

Dq,p(z) = N (’ - ‘)‘(3Y2 + 4y + 8) - dy - lJ3(3y2 + 4y + 8) + qT) , 
‘Y6 Y6 (16) 

where N = wIw)12/(~1 am:). Th-Frefore, in terms of a(y) and b(y), the leading term in 

the HQET Lagrangian contributes 

U(Y) = N (’ ;))'(3y2 + 4y + 8), 

b*(y) = N(’ ;61)2 (-(Y - 1)(3y2 + 4~ + 8)) . 

(17) 

(18) 

The corresponding calculation for the 3S1 state gives u*(y) = 34~) and b;(y) = 321,(y). 

These contributions to Dq,p(z) and Dq-v(z) differ by a spin factor of 3, as required by 

heavy-quark spin symmetry. 

Next we calculate the contributions from l/mq corrections in the heavy-quark propagator 

and the heavy-quark vertex. Expanding out the l/ mq correction to the propagator in (11) 

to first order, the correction to the amplitude is 

iM2 = 
8&a,R(O) M2& 1 

Keeping the interference terms in IMl+ M212, summin g over spins and colors, and inserting 

into (9), we find a l/mq correction to D q4p(t). Expressing this in terms of y, we find that 

the contribution to b(y) is 

b2(y) = N(“- lJ2 
Y6 

((--X71 + GY)(~Y’ + 4~ + 8)) q 

A similar calculation for the 3S1 state gives b;(y) = 3&(y). The l/mg correction 

amplitude in (11) from the heavy-quark vertex is 

iM3 = - 8J;;a,IR(O)I M2,6? 
3 mq 

(a -‘ma)2 (Ah - s) W)Y’Y”(l +d 

- &v * k)v“ + $-(yV$ - pf)) Tr * 

(20) 

to the 

(21) 
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Keeping the interference terms in [Ml + M3]‘, we obtain after some work the contribution 

to b(y) and to b*(y) due to the l/mg vertex correction 

b3(Y) = NCYys l) (- ( Cz y - 1 >( 3y2 + 4y + 8) + G(Y - l)(y t 2) - 12&y) , (22) 

b;(y) = 3N(Y$ l) (- ( - )( C2 y 1 3y2 t 4y + 8) t 6G(y - l)(y t 2) + 4&y) . (23) 

In (11), the (1 t $)/2 f ac or adjacent to I’ projects onto the large component of the t 

heavy-quark spinors produced by the source I?. There is also a contribution of order l/m* 

from the smull component of the heavy-quark spinors of the fragmenting & quark [2]. The 

corresponding amplitude is given by 

iM4 = - 
8+a,R(O) M2&i? 

3 7129 

xw)7”75(1 + $1 (&(7’P - $7’)) vr . (24) 

The contributions to b(y) and to b*(y) fr om the interference term in IM1 + M4j2 are 

b4(y) = 2NY - l -(3y3 + 5y2 t 2y - 4) , 
Y5 (25) 

b;(y) = 6NY-1 3 y5 (Y - Y2 + 2Y - 4) * (26) 

The complete expression for b(y) is obtained by adding (18), (20), (22), and (25). Thus 

the fragmentation function Dg,p(z) for the ‘Se state, to next-to-leading order in l/m*, is 

given by (2) with 

U(Y) = N (’ -s’)2 (3y2 t 4y t 8) , 

b(y) 
--y 1 

(27) 

= NY ((y - 1)(3y3 + 15y2 + 8y - 8) - 12(C3 - 1)~~) . (28) 

The complete expression for b’(y) is obtained by adding 3b1(y), 3&(y), (23), and (26). The 

fragmentation function Dg-v(z) for the 3S1 state, to next-to-leading order in l/m*, is given 

by (3) with 

u*(y) = 3N (’ -s1)2 (3y2 + 4y t 8) , (29) 

b*(y) 
-5 

= 3N+ (-(y - l)(y3 + y2 - 8y t 8) t 4(C3 - 1)~‘) . (30) 

9 



The terms proportional to CZ in (28) and (30) cancel between propagator and vertex cor- 

rections. We have set Cl = 1 in (28) and (30). If we further put C3 = 1, we recover the 

next-to-leading terms in the l/~ expansion of the PQCD fragmentation functions given in 

Ref. [6]. 

The heavy-quark mass expansions (2) and (3) break down in the Iimit y -+ 00, which 

corresponds to t + 0, and also in the limit y --+ 1, which corresponds to z + 1. As y + 00, 

the leading terms, given by (27) and (29), scale like l/(ry2), while the next-to-leading terms 

in (28) and (30) scale Iike l/y. Thus the l/ mQ expansion breaks down when y is of order 

l/r or larger. In the limit y + 1, the leading terms in (2) and (3) vanish Iike (y - 1)2/r while 

the terms proportional to Cz - 1 in the next-to-leading terms go to 0 as the first power of 

y - 1. Thus, unless C3 = 1, the expansion aIso breaks down for y - 1 of order T or smaller. 

In Fig. 2, we compare the PQCD fragmentation functions (solid curves) with the heavy- 

quark mass expansions (2) and (3) at leading order (dotted curves) and next-to-leading 

order (dashed curves) in T. We use the value r = 0.10, which corresponds to D mesons. 

The normalization is fixed by arbitrarily setting N = 1 in (27)-(30). Note that we have set 

C3 = 1 in (28) and (30). For any other value of Cs, either (2) or (3) becomes negative for 

y very close to 1 indicating the breakdown of the l/m* expansion when z is too close to 1. 

From the figure it is dear that the next-to-leading order curves are in very good agreement 

with the complete P&CD fragmentation functions for both D and D’ mesons. Surprisingly, 

the leading order result for fragmentation into D’ mesons aIso agrees very well with the 

complete PQCD result, while the leading order result for the D meson falls about 30% low 

near the peak. 

III. PQCD Model for Heavy-Quark Fragmentation 

It is tempting to use the heavy-quark limits of the PQCD fragmentation functions as 

phenomenologicaI models for the fragmentation of a heavy quark Q into heavy-light mesons 

Qij, where Q =corbandq= u, d, or s. To next-to-leading order in l/m*, these kagmenta- 
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tion functions are given by (2) and (3), with u(y), b(y), a*(y), and b*(y) given in (27) - (30). 

In addition to N and T, we must treat C’s as a phenomenological parameter, since, according 

to (5), it depends on the low-energy scale p where perturbation theory breaks down. These 

3 parameters al.I have well-defined scaling behavior with the heavy-quark mass; namely, N 

is independent of mQ, T scales like l/m*, and C3 scales Iike a,(mg)g/(33-2”f). Thus, if the 

parameters are determined phenomenologically from data on charm fragmentation into D 

and D’ mesons, then the corresponding parameters for the B and B* mesons can be deter- 

mined by scaling. The problem with this model is that unless C’s = 1, either &-p(z) or 

Dg+v(z) becomes negative for z near 1. This unphysical behavior only arises in a region of z 

where the l/m* expansion is breaking down, but it makes these fragmentation functions less 

attractive as a phenomenological model. If we choose C’s = 1 to avoid these difficulties, we 

might as well avoid the l/m* expansion altogether and use the complete PQCD fiagmenta- 

tion functions as our model. We therefore propose as a model of heavy quark fragmentation 

the PQCD fragmentation functions calculated in Ref. [6]: 

&+&) = 
TZ(l - 2)2 

N (1 _ (1 _ f)z)6 [6 - 18(1 - 2r)z + (21 - 74T + 68T2)z2 

-2(1 - T)(6 - 1% t 18r2)z3 + 3(1 - T)2(l - 2T + 2T2)Z4] , (31) 

DQ-+v(z) = 3N 
rz(1 - z)2 

(1 - (1 - T)Z)6 [2 2(3 2r)z - - + 3(3 - 2T + 4T2)Z2 

-2(l - T)(4 - T + 2T2)Z3 + (1 - T)2(3 - 2T + 2T2)t4] . (32) 

The only parameters are the normalization N, which is independent of mg , and T, which 

scales like l/m*. The parameter T, which in the PQCD calculation has the va.Iue m,/(mg + 

mq), can be interpreted as the ratio of the constituent mass of the light quark to the mass 

of the meson. Integrating over z, we obtain the total fragmentation probabilities: 

J 1 dz Dg,p(z) = 3N 8 + 13T + 228~~ - 212T3 + 53r4 
0 15( 1 - T)5 

t ~(1 t 8~ + ~~ - 6T3 + 2T4) log(r) 
(1 - T)6 

J - 126~~ + 174~~ + 89r4 
0 15(1 - T)” 

(33) 
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+ 
T(7 - 4T t 3T2 + loT3 + 2T4) log(T) 

(1 - T)6 
(34) 

The PQCD fragmentation functions (31) and (32) give the distributions in the longitu- 

dinal momentum fraction z for the mesons P and V in a heavy-quark jet. This model can 

be easily extended to give the distribution in their transverse momentum kT relative to the 

jet momentum [21]. In Ref. [6], the fragmentation functions were obtained as integrals over 

the invariant mass a of the fragmenting heavy quark: 

D+wd4 = ll(=) f dq-,p/y(2,9) , 

where the lower limit of the integration is: 

b&(Z) = F + 5. - 

The functions d +P,v(z,s) in the integrand are given by 

d+&, 8) = 

d+v(z, a) = 

- 

6NM2rs 
(1 - z)(l + rz)2 

(1 - (1 - T)Z)2(8 - (1 - ,)2M2)2 

(35) 

(36) 

[2( 1 - 2~) - (3 - 4T + 4r2)z + (1 - T)( 1 - 2r)z2] M2 4r(1 - r)i&f4 

(1 - (1 - T)Z)(6 - (1 - T)~MS)~ - (8 - (1 - ,)2M2)4 I 

(37) 

6Nikf2~s 
(1 - z)(l + 2rz + (2 + T2)22) 

(1 - (1 - t)t)‘(s - (1 - T)~M~)~ 

[2( 1 t 27) - (1 + 12r - 4r2)2 - (1 - T)( 1 + 2r)z2] M2 12t( 1 - r)M4 

(1 - (1 - r)z)(a - (1- T)~MS)~ - (8 - (1 - T)~M~)~ 1 (38) 
The invariant mass a is related to kT and z by 

8= 
M’+k$+mi+h$ 

z 1-z ’ (39) 

where M = mg +m, in the nonrelativistic limit. If, instead of integrating over a, we integrate 

over z with kg held fixed, we obtained the kT distribution for the fragmentation process. 

Introducing the dimensionless variable t = kT/M, we can define the kT-dependent functions 

2 

-_ 
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-_ .- dQ+pp+, t) and &+P&) by 

I 0 
= dt DQ,plv(t) = lw dt I’ dz d+p/v(z, t) 

= J J ‘dz m 
0. 

* dg-.p/v(z, 8) . 
+iin(~) 9 

This implies 

%P/V(t) = mf2t o1 dzz(l _ ;)+ q dQ-++, 4z, t)) J 9 
with 

42, t) = M2 
1 + t2 T2 + t2 
-+- 

z l-t 

Carrying out the integrals over z, we find 

[4T2 - (2 + T + 2T2)t2] log(T) 

- (1 - T)t [30T3 - T(61 - 20T + 28r2)t2 - (3 - 48T + 48T2 - 12T3)t4] 

+ 12t [4T” - T(2 + T + 2T2)t2 + (1 - 

+ 3 [10T4 - 3T2(11 + 2T + 2T2)t2 + (3 + 4T + 19T2 - 6T3)t4 

+(3 + 12T - 20r2 + 8r3)t6] Arctan 

(40) 

(41) 

(42) 

(43) 

+4+) = 
3Nr 1 

2( 1 - T)6 t6 
- 8Tt [12T2 - (6 + 7T + 2T2)t2] log(T) 

- (1 - T)t [3OT” - T(61 + 28~ - 20T2)t2 t (5 - 8~ + 8~~ t 4T3)t4] 

+ 4t [12T3 - T(6 + 7T + 2T2)t2 + (1 - T)lt’] log s 

( ) 

+ [30T4 - 3T2(33 + 22T - 10T2)t2 + (9 + 20T + T2 + 22T3 + 8r4)t4 

-l-(9 - 12~ + 4~~ t 8r3)ts] Arctan (44) 

In general, fragmentation functions D(z,p2) depend not only on z but also on a factor- 
i 

ization scale cr. In a high energy process that produces a jet with transverse momentum pi, 

the scale p should be chosen to be on the order of pi. The functions (31) and (32) should 

be regarded as models for heavy-quark fragmentation functions at a scale p of order mg. 
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For values of ~1 much larger than mQ, the fragmentation functions (31) and (32) should be 

evolved from the scale rnQ to the scale p using the Altarelli-Parisi equation: 

c2& DQ-H(z,p2) = l1 f pg_Q$P) b+H(Y,P2) 7 

where PQ-Q(Z) is the appropriate splitting function: 

PQ-&,p) = y z . ( 1 - + 

(45) 

(46) 

One aspect of the initial conditions (31) and (32) and the evolution equation (45) that 

may cause problems in practical applications is that they do not respect the phase space 

constraint : 

al~H(4 II”> = 0 for z < M2/p2 , (47) 

This can be remedied [9] by using (47) as the initial condition on the fragmentation function 

equation and replacing (45) by the inhomogeneous evolution equation 

a 
p2 a/L2 - D*+H(z,p2) = I’ p PQ-4(~,t)DQ,H(Y,yC2)+dq,x(~,C2)~(p2-a~(z)) Y (48) 

where do+H(z, a) is defined by the integrand in (35) and a&( 2) is given in (36). 

IV. Comparison with other Fragmentation Models 

The model for heavy-quark fragmentation which has been used most extensively in phe- 

nomenological applications is the Peterson fragmentation function [lo]: 

&HI(Z) = NH 
z(1 - 2)s 

[(l - z)2 + E@]2 ’ (49) 

where NH and EH are adjustable parameters that may depend on the hadron H. This 

fragmentation function has the correct behavior in the heavy-quark limit if NH scales like 

l/m* and eH scales like l/m&. Identifying. cH with t2 and expressing (49) in terms of the 

Jaffe-Randall scaling variable y defined in (l), we find that it reduces in the limit T + 0 to 

NH (~-1)~ 
&-H(z) + - 

T2 [(y - l)2 + II2 * 
(50) 
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.- The Peterson fragmentation function is just the square of a light-cone energy denominator 

multiplied by a phase space factor. It contains no spin information; the normalization 

parameter NH is to be determined independently for the pseudoscalar and vector mesons of 

a heavy-quark spin multiplet. 

An alternative fragmentation model which does contain spin information has been pro- 

posed by Suzuki [ll]. S uzuki’s fragmentation functions are derived from the same Feynman 

diagram in Fig. 1 as the PQCD fragmentation functions, but with two essential differences. 

First, the diagram was calculated in Feynman gauge. If a general covariant gauge had been 

used, Suzuki’s fragmentation functions would have depended on the gauge parameter. The 

PQCD fragmentation functions that we calculated are gauge-invariant. We calculated the 

diagram in the axial gauge only for simplicity. If we had used a covariant gauge, we would 

have had to also include diagrams in which both the virtual heavy quark and the virtual 

gluon are emitted by the source I’ in Fig. 1. Alternatively, we could have calculated the 

PQCD fragmentation functions for the fragmentation of a heavy quark into S-wave heavy 

quarkonium directly from the general gauge-invariant definition [12]. Such a calculation has 

been carried out for the equal mass case of charmonium by Ma [13]. A second essential 

difference between the PQCD model and Suzuki’s is that we integrated over the invariant 

mass s of the fragmenting quark (see Eq. (9)). Th e invariant mass is related to the transverse 

momentum /CT of the meson relative to the fragmenting quark by (39). Rather than integrat- 

ing over kg, Suzuki chose to evaluate the integrand at a typical value (g). Suzuki’s model 

therefore has 3 parameters: the overall normalization N, the mass ratio T, and (k$)/mi. 

When expressed in terms of the scaling variable y defined in (l), Suzuki’s fragmentation 

function D+.p(z) reduces in the limit T - 0 to 

N(Y - ‘) 

2 (Y - q2 t Ic2 
T [y2 + K2]4 ’ 

where ,2 = (k$)/(r2m~). By heavy-quark spin symmetry &-V(Z) differs, in this limit, 

only by a factor of 3. 

The Peterson, Suzuki, and PQCD fragmentation functions all vanish like (l-~)~ as t + 1. 
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An alternative fragmentation function which vanishes like the first power of (1 - z) has been 

proposed by Collins and Spillers [14]. Thi s was motivated by incorrect dimensional counting 

rules. The correct dimensional counting rules for QCD [15] do in fact give a limiting behavior 

of (1 - z)~ for the fragmentation function. The Collins-Spillers fragmentation function can 

be derived in a similar way to ours, except that in the Feynman diagram in Fig. 1, the 

interaction mediated by the virtual gluon is replaced by a point-like scalar Yukawa coupling 

between the meson, the heavy quark, and the light quark. Consequently, the denominator of 

the matrix element contains only one power of (a - mi), in contrast to the 2 powers in (12). 

It is the omission of the gluon propagator that changes the behavior as z + 1 from (1 - z)~ 

to (l-z). Also, instead of integrating over the invariant mass of the fragmenting quark as in 

(9), Collins and Spillers, like Suzuki, evaluated the integral at a typical value (q). Taking 

the scaling limit T -+ 0, the kagmentation function of Collins and Spillers reduces to 

&-P(Z) ---) y (Y - 1) ‘“ry; :‘$:’ 9 (52) 

where n2 = w/(T2m;)* 

The various fragmentation models in the literature have been summa&red in Ref. [16] 

and compared with experimental data on D and D’ production. The string models and 

parton cluster models are very different in spirit from those discussed above. One can derive 

analytic expressions for the heavy-quark fragmentation functions from the string models [ 171. 

They contain a tunneling factor exp(-Bmk/z), which suppresses the small-z region. In the 

scaling limit, the Lund symmetric fragmentation function behaves like 

DQ-H(Z) + NrPe-B(m%+(k%))(y _ I)@ . (53) 

Unless N scales like eBrnirn$+‘, this is inconsistent with heavy-quark symmetry, which re- 

quires the leading term to scale like mg as mg + 00. 

The PQCD model for heavy-quark fragmentation has a number of advantages over those 

described above. First, it is rigorously correct in the limit mq >> f&D. Higher order 

perturbative corrections can be systematically calculated. Relativistic corrections can also 
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be calculated in terms of additional nonperturbative matrix elements [18]. Second, our model 

is consistent with heavy-quark symmetry in the limit mg -+ 00. The logarithms of rng that 

are predicted by HQET would be reproduced by the higher order perturbative corrections. 

The PQCD model is also more predictive than those in Refs. [lo, 11, 14). It describes spin- 

dependent effects, like Suzuki’s model, but without introducing any additional parameters. 

The PQCD model not only predicts the z-dependence of the fragmentation functions but 

also their dependence on ACT, the transverse momentum of the meson relative to the jet. The 

fragmentation functions (31) and (32) apply only to S-wave mesons, but the fragmentation 

functions for higher orbital-angular-momentum states can also be calculated. The PQCD 

fragmentation functions for the P-wave mesons have been calculated to leading order in Q, 

in Refs. [19]. 

v. The Vector-to-Pseudoscalar Ratio 

In any production process for heavy-light mesons, one of the most fundamental experi- 

mental observables is the ratio 

pv 
V 

=v+p* (54) 

which measures the relative number of vector mesons V and pseudoscalar mesons P that are 

produced. If the mesons are produced within a heavy-quark jet, then V and P in (54) can be 

identified as the fragmentation probabilities for the heavy quark to fragment into vector and 

pseudoscalar mesons, respectively. The ratio Pv can depend on kinematic variables, such as 

the longitudinal momentum fraction t of the meson or its transverse momentum JET relative 

to the jet. In the PQCD model for fragmentation, the normalization factor N cancels out 

in the ratio (54), so that Pv is determined by the parameter r only. 

The simplest measure of the ratio PV comes from the total numbers of vector and pseu- 

doscalar mesons in the jet integrated over z and k~. Setting P and V in (54) to the fiag- 

mentation probabilities in (33) and (34), we find that the ratio Pv in the PQCD model of 
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fragmentation is 

pv = (1 - r)(24 + 109r - 126~' + 174~~ + 89r4)+ 15r(7 - 4T + 3T2 + 10r3 + 2T4)log(r) 

2(1- ~)(16 + 61~ + 51T2 - 19r3 + 71~~) + 60r(2 + T + r2 + T3 + r4)log(r) 

This ratio is plotted as a function of r in Fig. 3. From the graph it is clear that PV is not 

strongly dependent on r. At T = 0, Pv = 3/4 as required by heavy-quark spin symmetry. 

As T increases Pv decreases slowly to Pv = 0.51 at T = 0.5. Thus at nonzero values of 

T, the vector state is less populated than would be given by naive spin counting. We can 

determine the value of T for the D and D* system using experimental measurements of Pv. 

A complete compilation of experimental data for Pv from LEP, CLEO, ARGUS, PETRA, 

and TRISTAN can be found in Ref. [20]. The key point in obtaining consistency between 

these measurements is using the updated branching ratio B(D+* --) DOT+) x 0.68 instead of 

the old value 0.55. The experimental value Pv = 0.65 f 0.06 determines the parameter TD 

for the D - D’ system to be rD = 0.10 +‘*12 -o.or. If we interpret T as the ratio of the constituent 

mass of the light quark to the mass of the meson, then the value TD = 0.10 corresponds to 

a constituent mass of 200 MeV. Given a value of TD, we can determine the corresponding 

value for the B - B* system by using the simple scaling behavior TB = (mD/??ajj)T~. This 

gives rg = 0.03 ?i:z. 

Having determined the parameter T from data on D - D* production, we can now predict 

how the vector-to-pseudoscalar ratio should vary as a function of the longitudinal momentum 

fraction t. The z-dependent ratio Pv(z) is defined by (54), where P and V are given by the 

fragmentation functions (31) and (32): 

with 

44 = 2 - 2(3 - 2r)z + 3(3-- 2~ +4y2)z2 

-2(1 - T)(4 - T + 2T2)23 + (1 - T)73 - 2T + 2T2)24 , 

d(z) = 3 - 3(3 -4+ +(12 - 23~ $26~~)~~ 

(57) 
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-(l - T)(9 - ll? + 12T2)Z3 + 3(1 - T)2(1 - T + T2)Z4 . 
(58) 

This ratio is plotted as a function of z in Fig. 4 for the values T = 0.10 (solid curve), T = 0.03 

(dotted curve), and T = 0.22 (dashed curve). At t = 0, Pv(z) = l/2, regardless of the value 

of T. It decreases slightly for smah z, and then increases monotonically to a maximum vaIue, 

at t = 1, of 0.74 for T = 0.03, 0.73 for T = 0.10, and 0.70 for T = 0.22. Note that, in spite of 

the large uncertainty in our determination of T, the uncertainty in Pv(t) is less than about 

11%. Thus the PQCD model gives a rather unambiguous prediction that PV should vary 

from around l/2 at small values of z to almost 3/4 near z = 1. 

The kT-dependent ratio Pv(k~) is defined by (54), with P and V given by (43) and (44): 

3 nl -I- 712 log(r) -i- m log (3) -I- n4Arctan (9) 
PV(kT) = - 

4 4 + dz log(T) + da log (3) + d4Arctan (9) ’ 
(59) 

where 

781 = -(l - r)t[30r3 - ~(61 + 28~ - 20T2)t2 + (5 - 8~ + 8~~ + 4T3)t4] , (60) 

n2 = -8?t[12r2 - (6 + 7T + 2T2)t2] , (61) 

n3 = 4t[12r3 - T(6 + 7T + 2T2)t2 + (1 - T)2t6] , (62) 

n4 = [30T4 - 3T2(33 + 22T - 10t2)t2 i- (9 -i- 20T -I- r2 + 22~~ + 8r4)t4 

i-(9 - 12~ + 4r2 + 8r3)t6] , (63) 

and 

dl = -(l - T)@0T3 - T(61 i- 16~ - 8T2)i2 + 3(l -t 2T - 2T2 + 2r3)t4] , (64) 

d2 = -12tt[8r2 - 2(2 + 2T + T2)t2] , VW 

& = 6t[8r3 - 2?(2 + 2T + T2)t2 + (1 - T)2t”] , (66) 

d4 = 30T4 - 9T2(11 + 6~ - 2T2)t2 + 3(1 + T)2(3 + 2T2)t4 + 3(3 - 4T2 + 4T3)t6 . 

(67) 

This ratio is plotted as a function of t = kT/M in Fig. 5 for the three values T = 0.10,0.03, 

and 0.22. At t = 0, Pv(t) = 3/4, g dl re ar ess of the value of T. As t increases, Pv(t) quickly 

19 



decreases to its asymptotic value at t = 00. At t = 1, Pv(t) is within 0.1% of its asymptotic 

value of 0.65 for T = 0.03, 0.62 for T = 0.10, and 0.60 for T = 0.22. Again we find that, in 

spite of the large uncertainty in T, we obtain a rather precise prediction for PV as a function 

of kT. 

The PQCD fragmentation functions for vector mesons have been applied previously [21] 

as a phenomenological model to describe the fragmentation processes c + D* and b + B’. 

The fragmentation functions were separated into the transverse and longitudinal polarization 

components. The spin alignment, which measures the ratio of transverse to longitudinal po- 

larizations, was calculated as a function of z and as a function of kT. In the case of production 

of D* by charm fragmentation, the spin alignment predicted by the PQCD fragmentation 

model was shown to be consistent with CLEO measurements [21]. In addition, the predicted 

value of the average longitudinal momentum fraction (z) for c + D’ and for b + B’ was 

shown to be in excellent agreement with data from LEP, CLEO, and ARGUS [21]. The 

values of T used for D* and B* mesons in these comparisons were T = 0.17 and T = 0.058, 

respectively, which lie within the range determined above from measurements of Pv. 

The PQCD fragmentation functions have also been applied in Ref. [22] to predict the 

fragmentation spectra for the B, and B,* mesons based on the production rates of the B, 

mesons measured at LEP. Instead of treating the normalization N as a phenomenological 

parameter as advocated in this paper, the authors calculated N using the PQCD expression, 

which involves a, at the scale of the strange quark mass. 

VI. Summary 

We have studied the heavy-quark mass limit of the PQCD fragmentation functions for 

producing S-wave mesons. The leading and next-to-leading terms in l/ma were calculated 

directly from HQET. The PQCD fragmentation functions were proposed as a phenomeno- 

logical model for fragmentation into heavy-light mesons. With only 2 parameters, this model 

describes fragmentation into the ‘So pseudoscalar meson state and the transverse and longi- 
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tudinal polarization states of the 3Sr vector meson. It describes not only the z-dependence 

of the fragmentation probabilities, but also their dependence on the transverse momentum 

kT of the meson relative to the jet within which it is produced. This model can easily 

be extended to describe heavy quark fragmentation into P-wave states using the PQCD . 

fragmentation functions calculated in [19]. The PQCD fragmentation functions were com- 

pared with other models for heavy-quark fragmentation in the literature. As an application, 

the PQCD fragmentation functions were used to predict the ratio of vector-to-pseudoscalar 

states as a function of z and as a function of kT. The ratio Pv is predicted to vary from 

around l/2 at smah values of t to almost 3/4 near z = 1. 
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Figure Captions 

1. Feynman diagram used to calculate the PQCD fragmentation functions in axial gauge. 

2. Comparison of the D,,D( z) (lower set of curves) and DC+~*(z) (upper set of curves) 

fragment ation functions. The normalization is arbitrary. Shown are the full PQCD 

results (solid curves), the leading terms (dotted curves) in the heavy-quark mass ex- 

pansion, and the leading plus next-to-leading terms (dashed curves) in the heavy-quark 

mass expansion. 

3. The ratio PV as a function of T. 

4. Predictions for the ratio &J(Z) as a function of z for r = 0.10 (solid curve), T = 0.03 

(dotted curve), and T = 0.22 (dashed curve). 

5. Predictions for the ratio &(k~) as a function of /CT for T = 0.10 (solid curve), T = 0.03 

(dotted curve), and T = 0.22 (dashed curve). 
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